AudioCommons
D2.7 Service integration guidelines

audio
o @ Ma—
commons

Deliverable D2.7
D2.7 Service integration guidelines

Grant agreement nr 688382

Project full title Audio Commons: An Ecosystem for Creative Reuse of Audio Content
Project acronym AudioCommons

Project duration 36 Months (February 2016 - January 2019)

Work package WP2

Due date 31 January 2019 (M36)

Submission date 31 January 2019 (M36)
Report availability ~ Public (X), Confidential ()
Task leader QMUL

Authors Sasha Rudan, Miguel Ceriani, Fabio Viola, Mathieu Barthet, Sinisha Rudan,
Francesco Antoniazzi, Gyorgy Fazekas

Document status Draft (), Final (X)

- This project has received funding from the European Union’s Horizon 2020 Page 1 of 42

research and innovation programme under grant agreement N° 688382

AudioCommons
D2.7 Service integration guidelines

Table of contents

Table of contents 2
Executive Summary 4
1 Introduction 5
1.1 Main objectives and goals 5

1.2 Terminology 5

2 Audio Commons Mediator 6
2.1 Introduction 6
2.2 Technologies 6

2.3 Authentication 6
2.4. Implementation Changes 7
2.4.1 End user perspective 7

2.4.2 Service Integration perspective 8

2.5 Semantic Aspects of the Mediator 8

2.6 Steps towards integrating a new service provider 13
2.6.1. Create a new repository 13

2.6.2. Provide all necessary mappings templates 13

2.6.2.1. External variables 14

2.6.3. Register in “.gitmodules” file 14

2.6.4. Register inside the mediator’s config file “mediaconf.yaml” 14

2.6.5. Provide the service uri and key 15

2.7 A short introduction to data models 15
2.7.1 Description of basic AC ontology classes 15

2.7.2 Real-world example 17

research and innovation programme under grant agreement N° 688382

- This project has received funding from the European Union’s Horizon 2020 Page 2 of 42

AudioCommons
D2.7 Service integration guidelines

2.8 Scenarios for Testing and Evaluating Service Integration
2.8.1 Isolated test of SPARQL-Generate templates
2.8.2 Providing mapping templates to ACE maintainers
2.8.3 Deploying one’s own AC mediator ecosystem
2.8.4. Integration evaluation
2.9. Open Challenges
2.9.1. Sequential extension of the mediator search workflow
2.9.2 Parallel extension of the the mediator search workflow
2.9.3 Prototyped Solution
3 Conclusion
4 References
5. APPENDIX
5.1 Access Info
5.2. SPARQL-Generate Response

5.3. JSON-LD response from mediator

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

23
23
24
24
24
25
27
27
28
30
31
32
32
32
37

Page 3 of 42

o

AudioCommons
D2.7 Service integration guidelines

Executive Summary

This deliverable is part of WP2, a work package that describes the Audio Commons Ontology and
Audio Commons API specification. It is intended for developers who wish to include new services in
the ACE using the latest version of the Audio Commons mediator, our software component for service
integration. The Mediator is a component that lies at the heart of the Audio Commons Ecosystem
(ACE) and interconnects all Audio Commons services. As part of WP2, an initial version of the Audio
Commons Mediator was developed (see D2.6). This deliverable describes the next generation of this
component, version 2 (v2), a semantic mediator that brings several improvements over the previous
version (v1). The improvements offered by the service integration procedure described in these
guidelines consists primarily in the declarative nature of the integration. This should be contrasted
with the initial service integration method described in Deliverable D2.6. Using the solution described
in D2.6, any new ACE service provider had to be integrated by means of a procedural implementation
using a set of interfaces (also called mixins in Python 3 terms which was the implementation
language of choice).

In the final implementation the integration happens at a declarative level using a generic software
component capable of providing automatic APl mappings. Using the SPARQL-Generate language (an
extension of the SPARQL query language) we facilitate integration defined through a mapping
template that SPARQL-Generate can interpret and translate to standard JSON RESTful API responses
also compatible with a semantic RDF graph using the JSON for Linked Data (JSON-LD) syntax. This
has two advantages. First, the mappings between service APIs and the Audio Commons API is
separated from the procedural implementation, making it easier to maintain. Second, the API
responses may be interpreted as a semantic graph and linked with other data sources using linked
data principles. At the same time, the simplicity of standard JSON responses is retained and available
for developers who do not wish to exploit the advanced features of the semantic representation.

We start this deliverable by introducing the novel infrastructure that contributes to the new
mechanism for the integration of 3rd party services, as well as guidelines of service integration
together with references to documented examples. At the end of this deliverable, we describe the
open challenges of the current infrastructure, present a number of use cases addressing challenges
and provide some future directions for future developments of the mediator with its declarative
framework and its implications on the Audio Commons Ecosystem.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 4 of 42

AudioCommons
D2.7 Service integration guidelines

1 Introduction

1.1 Main objectives and goals

The main objective of this deliverable was building an improved version of the AudioCommons
mediator and provide guidelines for the integration of services with the new mediator. The task was
planned around the following objectives:

" design a solution that utilises declarative sound providers integration
Integrate existing sound providers in a declarative manner to test our solution
describe guidelines for future integration of new services

" evaluate the challenges related to the proposed solution and propose future improvements

1.2 Terminology

AudioCommons: reference to the EC H2020 funded project AudioCommons (grant agreement No
688382).

Audio Commons Initiative: foster the understanding of the AudioCommons project core ideas beyond
the lifetime and specific scope of the funded project. The term “Audio Commons Initiative” is used to
imply i) our motivation to continue supporting the Audio Commons Ecosystem and its ideas after the
lifetime of the funded project, and ii) our intention to engage new stakeholders which are not officially
part of the project consortium.

Audio Commons Ecosystem (ACE): a series of technologies and actors involved in the publishing and
consumption of the Audio Commons content.

Audio Commons content (AC): audio content released under Creative Commons licenses and
enhanced with meaningful contextual information (e.g., annotations, license information) that enables
its publication in the ACE.

Content creator: individual users, industries or other actors that create audio content and publish in
the ACE through content providers.

Content provider: services that expose content created by content creators to the ACE.

Content user: individual users, industries or other actors who use the content exposed by content
providers and created by the content creators in their creative workflows.

research and innovation programme under grant agreement N° 688382

- This project has received funding from the European Union’s Horizon 2020 Page 5 of 42

AudioCommons
D2.7 Service integration guidelines

2 Audio Commons Mediator

2.1 Introduction

The release of the first mediator (described in the D2.5 deliverable) provided a “hard-coded”
mechanism of service integration. It supported a set of interfaces (also called mixins in Python
terminology) that were supposed to be implemented in order to integrate a service appropriately. The
initial version of the mediator (v1) focused on the following types of services: Search, Authentication,
and Licensing. Mediator v2 focuses mainly on search services and this deliverable describes the
integration of search services extending the initial mediator by allowing the reuse of its services.

The main incentive for developing mediator v2 was not necessarily to replace mediator v1, but rather
to explore and evaluate the feasibility of using an ontological approach in search APl implementation
and the underlying infrastructure. Therefore, v2 does not yet have all necessary features to completely
obsolete mediator v1, but rather it offers new ACE members and prospective clients an advanced
environment that supports using the Audio Commons Ontology (D2.3) and the exploration of
advanced semantic integrations with 3rd party ontologies. This has been demonstrated during the
Abbey Road Hackathon, see in-use evaluations described in D6.12 section 6.3 as well as in D7.7.

The VY\@ GSH ef the mediator v2 is available at the AudioCommons repository:
https://qithub.com/AudioCommons/semanticMediator

2.2 Technologies

Mediator v2 builds upon the following technologies:

Python Flask framework (Flask is a micro web framework written in Python and based on the
Werkzeug toolkit and Jinja2 template engine; it is BSD licensed)
" MEAN stack: MongoDb, Express.JS, Angular 6 and Node.JS

and integrates following components:
” SEPA (SPARQL Event Processing Architecture) aims to support the development of
distributed, Web-based and context aware applications, in particular with reference to
dynamic contexts where detecting and reacting to events is critical [SEPA]
SPARQL-Generate - is a component that implements SPARQL-Generate extension used for
translating non-RDF search-services’ APIs into AC Ontology [SPARQL-Generate-component]
ColaboFlow.Audit - Part of the Colabo.Space framework; supports logging and visualizing
mediator activities and data/control flows; it also enables particular services (e.g. licensing,
sessions, etc.) [Colabo][ColaboFlow]
ColaboFlow.Go - Part of the Colabo.Space framework; supports executing remote
activities/micro-services through gRPC, and data/control flows [gRPC] [ProtoBuff]

2.3 Authentication

The authentication workflow of the semantic mediator (current version, v2) is identical to the previous

research and innovation programme under grant agreement N° 688382

- This project has received funding from the European Union’s Horizon 2020 Page 6 of 42

o

v1 of the mediator, as it is offered through the mediator v2, which is described in the deliverable D2.4
and additionally at the official documentation of the authentication workflows and API in the mediator
v1 [mediator-v1-authentication]. To support the integration of v1 and v2 of the mediator, additional
services are provided and their full integration can be seen on Fig. 2.3.1.

AudioCommons
D2.7 Service integration guidelines

From the perspective of the ACE client, the only difference in authentication consists in the usage of
the sub-path “/ EYXLI RMEX "~in the mediator access. For example, the login access point is now:
https://m2.audiocommons.org/authenticate/login instead of the previous access point:
https://m.audiocommons.org/login.

Infrastructure-wise, mediator v1 is integrated into the v2 ecosystem in a WD QI H&Z WIBRthat only
includes the components that are necessary to support authentication. Authentication states are
stored in the 4SWKV Wiatabase and later checked through the authorization component on behalf of
the semantic mediator.

e

P ——

————
Postgres

Django
OAuth layer
& routes
authorization ACE
service Mediator
(node.js) v1 (python3)
(slimmed)
1
1.n
ACE Semantic NeiNx | T, AC
Mediator back-end Semantic
(python3) [proxy ‘"'"'TH Client
q N

@Aelehe KiPI[[@Q[BZdI[I[jINPI pAINP Z1GSi]lg

2.4, Implementation Changes

Mediator v2, also referred to as WQERA®Q | HS\In the rest of this document, is a major revision and
it is not backwards compatible with the previous version of the mediator v1 when it comes to the
implementation of ACE service integration components. That is, interfaces developed for the initial
version cannot be used with the final version.

2.4,1 End user perspective

The end user (client) is now empowered with a full ontology-based API response. This opens various
possibilities in continuous knowledge evolution and expansion on the client side (discussed more in
D2.8 and D6.12), and allows for support provided by knowledge federation through 3rd party
ontological knowledge spaces. However, this means that the previous regular RESTful JSON API is
not supported anymore. Instead, an enhanced RESTful JSON APl is provided with responses that may

research and innovation programme under grant agreement N° 688382

- This project has received funding from the European Union’s Horizon 2020 Page 7 of 42

o

be interpreted as both conventional JSON structures or semantic graphs via JSON-LD notation.

AudioCommons
D2.7 Service integration guidelines

On the other hand, some of the services are not updated and are still provided through integration
with the previous version of the mediator.

It is important to note that v2 mediator does not provide a separate retrieval access point but it rather
works in a "WR®&Q SH from the client perspective; it retrieves all search service responses and then
returns them all merged in a single response and closes the connection to the client.

2.4.2 Service Integration perspective

The service integration model has changed fundamentally compared to the initial mediator and it is
described in this deliverable. It is based on a declarative model of translation of service API into the
Audio Commons Ontology. For this purpose, a SPARQL translator is used, which in most cases
translates the services’ RESTful response into an RDF conforming to the AC Ontology. We use a
SPARQL-Generate component for this tasks.

2.5 Semantic Aspects of the Mediator

The semantic support of the mediator is the core change and an essential motivation for v2 of the
mediator. A simple model of the mediator can be seen on Fig. 2.5.1. As we can see, each search
service is supported using a 7| QERAMXYHETX V(SA) component. Unlike mediator v1, SAs are not
separate procedural implementations (Python code), but rather a single generic component that is
driven using declarative mappings to facilitate adaptation to each unique service provider in the ACE.

This is realized by means of a special extension of SPARQL - a SPARQL-Generate extension
implemented within the SPARQL-Generate component; [SPARQL-Generate-extension] and
[SPARQL-Generate-component], respectively. SPARQL-Generate is an extension of SPARQL 1.1 for
querying not only RDF datasets, but also documents in arbitrary formats. It offers a simple
template-based option to generate RDF Graphs from documents and different streams. These
templates are described in terms of the SPARQL-Generate language [SPARQL-Generate-language].

research and innovation programme under grant agreement N° 688382

- This project has received funding from the European Union’s Horizon 2020 Page 8 of 42

