AudioCommons

D4.3 First prototype tool for the automatic semantic description of music pieces Zg 9

audio
—nit G o
commons

Deliverable D4.3

First prototype tool for the automatic semantic
description of music pieces

Grant agreement nr

Project full title
Project acronym
Project duration
Work package
Due date
Submission date
Deliverable type
Report availability
Task leader
Authors

Document status

688382

Audio Commons: An Ecosystem for Creative Reuse of Audio Content
AudioCommons

36 Months (February 2016 - January 2019)
WP4

30 April 2017 (M15)

30 April 2017 (M15)

Report (), Demonstrator (X), Other ()
Public (X), Confidential ()

QMUL

Johan Pauwels

Draft (), Final (X)

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 1 of 12

AudioCommons

D4.3 First prototype tool for the automatic semantic description of music pieces

Table of contents

Table of contents
Executive Summary
1 Description of the demonstrator/software
1.1 Production-ready software
1.1.1 Vamp framework
Installation instructions
1.1.2 Essentia framework
1.2 Experimental software
1.2.1 VamPy framework
1.2.1 ProbCog toolkit

2 Conclusion

APPENDIX 1: Neural network architecture of the VamPy instrument identification plugin

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

o

A WD

10
11
12

Page 2 of 12

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

Executive Summary

As part of the Audio Commons Ecosystem, a number of tools are provided for the automatic analysis
of audio content without the need for human intervention. These tools are designed for extracting i)
musical audio properties for music pieces and music samples, and ii) non-musical audio properties
for any kind of sounds. Work-in-progress versions of these tools have been released in parallel for the
first prototype in the Audio Commons Ecosystem.

This document presents a first overview of the tools that can be used to semantically annotate music
pieces. We specifically discuss those descriptors that cannot be applied to samples, because they
require more temporal context or musical complexity. As such, they complement the tools presented
in D4.2 and D5.2. Examples of descriptors for music pieces are genre or mood tags . One application
would be to run these tools as a service on a webserver to automatically annotate all audio in the AC
ecosystem. The resulting labels can subsequently be used to match audio to user queries, which are
generally formulated on a high semantic level.

In order to ease parallel development and modularity, the one “tool” presented in this deliverable
actually consists of a collection of smaller tools. Most of them are either part of the Vamp framework,
initiated at QMUL, or the Essentia framework, initiated at UPF-MTG. Both frameworks are mature and
permit the reuse of basic components. Another advantage is that new tools can be developed in
isolation from the network technologies that are used to deploy these tools in the AudioCommons
ecosystem. As such, annotation tool authors don’t need to know about web technologies and vice
versa, making the separation of responsibilities easy. This also means that the resulting tools can be
used in other scenarios, e.g. on personal computers.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 3 of 12

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

1 Description of the demonstrator/software

This demonstrator consists of a number of tools that take an audio file as input and return a high-level
semantic labels (incl. possibly time-varying annotations). The different tools produce different types
of semantic labels, such as instrumentation, musical key, etc., and work independently from each
other.

Informed by the survey on user requirements’ in D2.1, a first draft of the Audio Commons ontology is
currently under development. As part of this ontology, a sound schema? is proposed to serve as the
minimum requirement for a provider to support within the Audio Commons Ecosystem. This draft
includes a number of high-level semantic musical properties that will need to be extracted
automatically. These properties are listed in the table below. The tools that are currently being
developed are either Vamp plugins or part of the Essentia framework. Both come with separate
installation instructions, which comprise the rest of this document. The table below lists which
property is implemented in each framework. Further details can be found in their respective section.
At this point, not all musical properties have an associated tool that can generate them yet.

Musical Property Example Feature Extraction Framework
Genre Rock, classical, jazz, hip-hop Essentia (E)

Instruments Piano, guitar, voice Vamp (E)

Mood Happy, dreamy, sad, aggressive Essentia (E)

Themes Advertising, fashion, film & tv

Tonality A major, Bb minor Vamp (S), Essentia (S)

Tempo 126 BPM, adagio Vamp (S), Essentia (S)

Chord Emaj7, Ddim Vamp (S), Essentia (S)

Table 1: Musical properties per framework

Some of the implementations are in a finalised state and are expected to be integrated into the Audio
Commons APl (WP2) without significant difficulties, whereas others are still evolving and will require
more effort for the integration. In the table, this is indicated by the suffixes (S) for stable software and
(E) for experimental. The sections of the documentation below also reflect this. Note that the quality
of the implementation does not necessarily reflect the quality of the underlying algorithm. Stable
software can in many cases still be improved in terms of the output it generates.

Naturally, the Audio Commons ontology contains more properties than the one listed above. On the
one hand, some properties need to be derived from metadata, because they are not contained in the
audio (e.g. title, artist). On the other hand, audio derived features also include more technical qualities

TAudio Commons Initiative Survey on Creative Interaction with Audio Content including responses by
over 660 audio professionals connected to the Audio Commons Ecosystem via our industry partners:
https://docs.google.com/forms/d/1c3iJhZcAPCqafmlUekj3aHAYPxeY6g-KW2bxZa8tUgNA/edit#resp
onses

2 https://docs.google.com/spreadsheets/d/19GIELgsx5AReb6d-8_6wfsVdSfUwCDggr8k2AXLVP48

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 4 of 12

https://docs.google.com/forms/d/1c3iJhZcAPCqfmlUekj3aHAYPxeY6g-KW2bxZa8tUgNA/edit#responses
https://docs.google.com/spreadsheets/d/19GlELgsx5AReb6d-8_6wfsVdSfUwCDggr8k2AXLVP48
https://docs.google.com/forms/d/1c3iJhZcAPCqfmlUekj3aHAYPxeY6g-KW2bxZa8tUgNA/edit#responses

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

related to the encoding of audio files (e.g. bitrate, number of channels) and low-level features (see
D4.1 and D4.2 for an overview of both). Finally, novel timbral descriptors are explained in D5.2.

1.1 Production-ready software

1.1.1 Vamp framework

Introduction

Vamp is an audio processing plugin system for plugins that extract descriptive information from
audio data — typically referred to as audio analysis plugins or audio feature extraction plugins. Just like
an audio effects plugin (such as a VST), a Vamp plugin is a binary module that can be loaded up by a
host application and fed audio data. However, unlike an effects plugin, a Vamp plugin generates not
processed audio output, but symbolic information related to the content of audio files. Typical things
that a Vamp plugin might calculate include the locations of moments such as note onset times,
visualisable representations of the audio such as spectrograms, or time-varying one dimensional data
(i.e. time series) such as power or fundamental frequency.

i HoST

4 ' ,‘ == PLUGIN

Aud 0

(om OR MoRE CatAnnNELS) (Muurlm
POCS 1BLE
Ouwov-rs
Aod outPUT
TYees) (’p"bs

S = 4

e o— e .

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 50f 12

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

W

A Vamp plugin set consists of a single dynamic library file with DLL, .dylib, or .so extension
(depending on your platform) plus optionally a category file with .cat extension and an RDF
description file with .ttl or .n3 extension?.

Installation instructions

To install a plugin set, copy the plugin's library file and any supplied category and/or RDF files into
your system or personal Vamp plugin location.

The plugin file extension and the location to be used depends on your platform:

File System plugin folder Personal plugin folder
extension
Linux or other .SO /usr/local/lib/vamp SHOME/vamp
Unix
0S/X .dylib /Library/Audio/Plug-Ins/Vamp | SHOME/Library/Audio/Plug-In
s/Vamp
Windows dll C:\Program Files\Vamp
(32-bit) Plugins
Windows dll C:\Program Files (x86)\Vamp
(64-bit) Plugins

You can alternatively set the VAMP_PATH environment variable to list the locations a host should
look in for Vamp plugins.

VAMP_PATH should contain a semicolon-separated (on Windows) or colon-separated (0S/X, Linux)
list of paths. If it is set, it will override the standard locations listed above.

Available plugins

A number of Vamp plugins that provide descriptors listed in Table 1 are listed in the table below along
with their download locations.

Name AC Website Source
Descriptor(s) code
available
BeatRoot Tempo https://code.soundsoftware.ac.uk/project | Y
s/beatroot-vamp
Chordino Chords http://www.isophonics.net/nnls-chroma Y

% This additional information provides mechanisms for finding plugins and categorising them in end

user tools.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 6 of 12

http://www.isophonics.net/nnls-chroma
https://code.soundsoftware.ac.uk/projects/beatroot-vamp
https://code.soundsoftware.ac.uk/projects/beatroot-vamp

AudioCommons

D4.3 First prototype tool for the automatic semantic description of music pieces

W

INESC Porto Beat Tempo http://smc.inescporto.pt/technologies/ibt/ | Y

Tracker

Queen Mary plugin set | Tempo, Tonality | http://vamp-plugins.org/plugin-doc/gm-va |Y
mp-plugins.html

Vamp Aubio plugins Tempo http://aubio.org/vamp-aubio-plugins/ Y

Vamp Plugin Hosts

A software tool that is capable of loading and executing a plugin is called a host. Once plugins have
been installed, they can be used by running one of the available hosts. A number of host applications
exist, each with their own advantages. They are listed in the table below. For large-scale deployment
of a plugin as part of an API, either Sonic Annotator (a standalone executable) or VamPy Host (a
Python package) would be the most suitable.

Name

Description

Website

Sonic Visualiser

Visual analysis tool

http://www.sonicvisualiser.org/

Audacity

Audio editor

http://www.audacityteam.org/

Ardour

Digital audio workstation

https://ardour.org/

Sonic Annotator

Batch extraction

http://www.vamp-plugins.org/sonic-annotator/

VamPy Host

Python integration

https://code.soundsoftware.ac.uk/projects/va

mpy-host

VamPy plugin for rapid prototyping

As part of the Vamp framework, a Python extension named VamPy exists which allows to rapidly
create Vamp plugin prototypes in Python. It needs to be installed like any other Vamp plugin by
downloading it from http://vamp-plugins.org/vampy.html. Then one can write plugins in Python
simply by saving the source files to the Vamp plugin directory. A tutorial that includes a Python
template can be found at http://isophonics.net/content/getting-started-vampy.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 7 of 12

http://vamp-plugins.org/vampy.html
https://ardour.org/
http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
http://www.vamp-plugins.org/sonic-annotator/
http://aubio.org/vamp-aubio-plugins/
http://smc.inescporto.pt/technologies/ibt/
http://www.audacityteam.org/
http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html
https://code.soundsoftware.ac.uk/projects/vampy-host
http://isophonics.net/content/getting-started-vampy
http://www.sonicvisualiser.org/
https://code.soundsoftware.ac.uk/projects/vampy-host

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

1.1.2 Essentia framewark

Essentia is a open-source C++ library for audio analysis and audio-based music information retrieval.
It contains an extensive collection of algorithms including audio input/output functionality, standard
digital signal processing blocks, statistical characterization of data, and a large set of spectral,
temporal, tonal and high-level music descriptors.

Essentia is cross-platform and it is designed with a focus on optimization in terms of robustness,
computational speed and low memory usage, which makes it effective for many industrial
applications. The library is also wrapped in Python and includes a number of command-line tools and
third-party extensions, which facilitate its use for fast prototyping and allow setting up research
experiments very rapidly.

Instructions to install Essentia on a multitude of platforms can be found at
http://essentia.upf.edu/documentation/installing.html. Precompiled binaries can be found on
http://essentia.upf.edu/documentation/extractors/. The Essentia framework contains a multitude of
descriptors, all of which are listed at http://essentia.upf.edu/documentation/algorithms_reference.html.
The ones that are particularly relevant for this deliverable are displayed in the table below

Essentia name AC Descriptor Website

Key Tonality http://essentia.upf.edu/docume
ntation/reference/std_Key.html

KeyExtractor Tonality http://essentia.upf.edu/docume
ntation/reference/std_KeyExira
ctor.html

PercivalBpmEstimator Tempo http://essentia.upf.edu/docume

ntation/reference/std PercivalB
pmEstimator.html

RhythmExtractor Tempo http://essentia.upf.edu/docume
ntation/reference/std_RhythmE
xtractor.html

RhythmExtractor2013 Tempo http://essentia.upf.edu/docume
ntation/reference/std_RhythmE
xtractor2013.html

ChordDetection Chord http://essentia.upf.edu/docume
ntation/reference/std_ChordsD
etection.html

ChordsDetectionBeats Chord http://essentia.upf.edu/docume
ntation/reference/std_ChordsD
etectionBeats.html

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 8 of 12

http://essentia.upf.edu/documentation/reference/std_PercivalBpmEstimator.html
http://essentia.upf.edu/documentation/reference/std_RhythmExtractor.html
http://essentia.upf.edu/documentation/reference/std_RhythmExtractor2013.html
http://essentia.upf.edu/documentation/reference/std_KeyExtractor.html
http://essentia.upf.edu/documentation/reference/std_PercivalBpmEstimator.html
http://essentia.upf.edu/documentation/reference/std_RhythmExtractor.html
http://essentia.upf.edu/documentation/extractors/
http://essentia.upf.edu/documentation/reference/std_KeyExtractor.html
http://essentia.upf.edu/documentation/reference/std_ChordsDetection.html
http://essentia.upf.edu/documentation/algorithms_reference.html
http://essentia.upf.edu/documentation/reference/std_RhythmExtractor2013.html
http://essentia.upf.edu/documentation/reference/std_PercivalBpmEstimator.html
http://essentia.upf.edu/documentation/reference/std_ChordsDetectionBeats.html
http://essentia.upf.edu/documentation/reference/std_RhythmExtractor2013.html
http://essentia.upf.edu/documentation/reference/std_ChordsDetectionBeats.html
http://essentia.upf.edu/documentation/reference/std_KeyExtractor.html
http://essentia.upf.edu/documentation/reference/std_Key.html
http://essentia.upf.edu/documentation/reference/std_ChordsDetectionBeats.html
http://essentia.upf.edu/documentation/reference/std_ChordsDetection.html
http://essentia.upf.edu/documentation/installing.html
http://essentia.upf.edu/documentation/reference/std_ChordsDetection.html
http://essentia.upf.edu/documentation/reference/std_Key.html
http://essentia.upf.edu/documentation/reference/std_RhythmExtractor.html

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

1.2 Experimental software

1.2.1 VamPy framework

Instrument identification plugin

An instrument identification plugin prototype has been developed that can distinguish between 24
instrument categories. These classes are: Shaker, Electronic Beats, Drum Kit, Synthesizer, Female
Voice, Male Voice, Violin, Flute, Harpsichord, Electric Guitar, Clarinet, Choir, Organ, Acoustic Guitar,
Viola, French Horn, Piano, Cello, Harp, Conga, Synthetic Bass, Electric Piano, Acoustic Bass, Electric
Bass. The plugin uses a neural network that consists of two convolutional layers and three densely
connected layers. It is trained on mel-frequency spectrograms with 128 bands calculated from the
first five seconds of 2400 loops (100 per class) of the Apple Logic Pro X library. More details of the
network architecture can be found in Appendix 1.

Installation and usage instructions

Because the drawback of a VamPy plugin is that it is not self contained, but relies on a number of
external packages, it can be challenging to deploy. To make matters easier, a Docker image* has been
created that consists of a minimal operating system with all the necessary dependencies. The Docker
configuration file and Python source code to recreate the image are available at
https://qgithub.com/AudioCommons/vampy-instrument-identification. However, the easiest way to run
the image is to download it from DockerHub, as per the instructions below.

First, the Docker runtime environment needs to be installed, if it wasn't already. Installation
instructions can be found at https://docs.docker.com/engine/installation/. Then start Docker such
that you get the command line interface. In order to run the instrument identification plugin from a
Docker container, the following command needs to be used: docker run -it --rm --volume
<path to local audio dir>:/srv jpauwels/vampy-instrument-identification

Explanation: docker run -it starts an interactive terminal in a container created from the image
jpauwels/vampy-instrument-identification which will be pulled in from DockerHub if you don't have it
locally. -rm removes the container after you halt it (type exit on the command line), because you don’t
want to keep changes to the image anyway and this way you will be forced to create a new container
from the the image every time you start it (such that the image can be synchronised with new updates
pushed to DockerHub). Because the container has an isolated filesystem, you'll want to map some
directory with audio files to the path /srv in the container with the --volume command.

Two Vamp transformation definitions (predominant-instrument.n3 and instrument-probabilities.n3)
have been added to the home dir, so inside the container you can execute sonic-annotator -t
~/predominant-instrument.n3 -w <writer> <audiofile>. The first transform returns the label
of the predominant instrument found in the file along with its probability and the second returns the
probabilities of all 24 instruments.

4 A Docker image is a lightweight, stand-alone, executable package of a piece of software that
includes everything needed to run it. See: https://www.docker.com/

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 9 of 12

https://docs.docker.com/engine/installation/
https://www.docker.com/
https://github.com/AudioCommons/vampy-instrument-identification

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

For automated use when you don’t want an interactive shell, you can combine both commands as
docker run --rm --volume <path to local audio dir>:/srv
jpauwels/vampy-instrument-identification
/usr/local/bin/sonic-annotator/sonic-annotator -t /root/predominant-instrument.n3
-w <writer> <audiofile relative to local dir>.

1.2.1 ProbCog toolkit

A possible route for the integration of ontologies into semantic annotation tools has been explored by
examining Markov and Bayesian Logic Networks (MLN/BLN). The ProbCog tool has been used for
this purpose. Some example configurations for various chord estimation approaches are made
available at https://github.com/jpauwels/MLN-vs-BLN.

Because the ProbCog toolkit is non-trivial to install, these examples are also packaged together with
the toolkit in a Docker container. The resulting image has been uploaded to DockerHub, such that you
can retrieve it from there using the tag jpauwels/probcog:mln-vs-bln.

Because the software includes a GUI, an X-server is required and starting Docker is slightly more
complicated. On macOS, you need XQuartz with “Allow connections from network clients” enabled
under the Security tab in Preferences. Then launch the image as follows:

ip=$(ifconfig en@ | grep inet | awk '$1=="inet" {print $2}')

xhost + $ip

docker run -e DISPLAY=$ip:@ -v /tmp/.X1ll-unix:/tmp/.X11l-unix --rm -it
jpauwels/probcog:mln-vs-bln

The configuration files provided in the repository are available inside the home directory of the image.
If you want to run the toolkit on its own, you can use the tag jpauwels/probcog:base. This software
is currently not expected to be integrated in the Audio Commons API, because of its high
computational requirements, but serves as a demonstrator for the underlying technology.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 10 of 12

https://www.xquartz.org/
https://www.xquartz.org/
https://github.com/jpauwels/MLN-vs-BLN

AudioCommons
D4.3 First prototype tool for the automatic semantic description of music pieces

2 Conclusion

In this document, an overview was given of the software that is currently available for the automatic
annotation of music pieces in the Audio Commons ecosystem. These descriptors can be generated
by a collection of smaller tools, either available as Vamp plugins or as part of Essentia. This report is
intended to inform WP2 about the software available for integration into an automatic annotation API.

The information contained herein is just a snapshot of the current situation, which is expected to be
improved constantly over the remainder of the project. Future efforts will be directed towards
developing new tools for those descriptors that have been identified as useful by WP2, but currently
have no associated software, notable the description of “themes”. Also existing tools will constantly
be upgraded when it comes to the quality of the generated labels and to the quality of the
implementations themselves. Moreover, the separate tools are expected to be integrated into one, for
easier rollout. Finally, a close integration with the tools described in D4.2 and D5.2 needs to be
achieved, such that the generated descriptors complement each other.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 11 of 12

AudioCommons

D4.3 First prototype tool for the automatic semantic description of music pieces

W

APPENDIX 1. Neural network architecture of
the VamPy instrument identification plugin

The exact parameters of the neural network as used in the VamPy instrument identification plugin can
be found in the diagram below. All activations functions are Leaky ReLU’s® with gradient 0.33, except

for the last layer, where they are softmaxes.

in | 216x128x1(data) | 4x128x64(weight) | 1x1x64(bias)

cony
out I 213x1x64(data) 213x1x64(aux)
in | 213xIx64(data)
max-pool
out | 107x1x64(data) | 107x1x64(aux)

l

in | 107x64x1(data) | 4x64x128(weight) | 1x1x128(bias)

conv
out 104x1x128(data)

104x1x128(aux)

l

in | 104xIx128(data)
out | 52x1x128(data) | 52x1x128(aux)

max-pool

 J

in | 6656x1x1(data) | 6656x400x1(weight) | 400x1x1(bias)

fully-connected

out 400x1x1(data)

400x1x1(aux)

l

in | 400x1x1(data) | 400x400x1(weight) | 400x1x1(bias)

fully-connected

out | 400x 1x1(data) | 400x 1x1(aux)

in | 400x1x1(data) | 400x24x1(weight) | 24x1x1(bias)

fully-connected

out

24x1x1(data)

24x1x1(aux)

® Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng (2013). Rectifier Nonlinearities Improve Neural
Network Acoustic Models, Proceedings of the International Conference on Machine Learning

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N° 688382

Page 12 of 12

http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf

